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Generalized Perturbation Theory: Quality of the 
First-Order Wave Function* 

Nimrod Moiseyev and Jacob Katriel 

Department o f  Chemistry, Teehnion - Israel Institute of Technology, 
Haifa 32000, Israel 

A recently proposed version of  generalized perturbation theory, in which the whole 
energy correction is taken care of  in second order, is investigated with respect to the 
quality of  its first-order wave function. It is demonstrated that the overlap of the 
wave function generated in this procedure with the exact solution is in most cases 
much closer to unity than those of  the Rayleigh-Schroedinger or Brillouin-Wigner 
perturbation theories. Certain approximations, by means of  which realistic systems 
become amenable to investigation within the presently discussed framework, are 
studied. 
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1. Introduction 

The idea that a generalized perturbation theory can be formulated so as to include the 
Rayleigh-Schroedinger (RS) and Brillouin-Wigner (BW) theories as special cases, has 
been explicitly discussed by Young and March [1], Yaris [2] and L6wdin [3], and is 
implicit in the work of  many others. 

Although the formal aspects of  this generalization have been studied in considerable 
detail, relatively little, has been done towards applying it to actual computations. An 
interesting recent exception, in which some earlier references are discussed, is due to 
Cederbaum et aL [4-6] ,  who have evaluated the extra parameters of  their version of  
the generalized theory by means of  a variational computation. 

The presently reported investigation is concerned with the situation in which the energy 
is already known from some external theoretical or experimental source, but the wave 
function is not. This is a rather commonplace situation in atomic and molecular 
physics. 

* Based on a section of a thesis to be submitted by N. M. to the senate of the Technion - Israel 
Institute of Technology, in partial fulfilment of the requirements for the D.Sc. degree, and 
presented in the Second International Congress of Quantum Chemistry, New Orleans, April 1976. 
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Out of the general theory presented in Ref. [7] we shall only need the expression for 
the energy up to second order 

~ '  IV oil 2 
E(2)(v) = e~  + V ~ 1 7 6  - (ei  - E )  - v ( e  o - 17) (1) 

i 

and that for the wave function up to first order 

x~(1)(p)= ~ ( 0 ) _  / ~ i  V~ 
ei - E )  - . ( %  - E )  ~ "  (2 )  

Here 3, is the strength parameter of the perturbation, (e  i, t~i} are the eigenvalues and 
eigenfunctions of the unperturbed system, E = E(X) is the exact energy and u is an 
additional parameter. BW corresponds to v = 0 and RS to u = 1. 

Ou r  p r o g r a m  is as f o l l o w s :  

We shall solve the equation E(2) (VE)  = E for VE = rE(X). The number of solutions of this 
equation is equal to the number of isolated singularities in E(2)(UE),  i.e., the number 
of discrete states of the unperturbed Hamiltonian for which got @ O, i 4 = O. 

We shall investigate whether the quality of the wave function up to first order, which is 
obtained by using particular values of u E in Eq. (2) is actually superior to those corre- 
sponding to the standard (RS and BW) formulations. To this effect, the value of u 
corresponding to the maximum of [( ~O)(u)J~x)[2,  to be denoted by us, will be evalu- 
ated for several cases as a reference to the quality of the wave functions obtained with 

rE. 

Furthermore, we shall consider certain approximations to u~, which may provide the possi- 
bility of studying realistic systems with a reasonable amount of effort, without knowledge 
of the exact energy. 
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Fig. 2. Overlap vs. u for the ground 
state of the harmonic oscillator 
with a quadratic perturbation 

2. One Perturbing State  

The simplest case consists o f  a state ~o which has only one nonwanishing off-diagonal 
matrix element of the perturbation,  with a state ~i. For  this case one immediately obtains 

iVo, ]/ 
~ =  e -  ~,. E -  (~--j+-Voo)J ( ~ -  ~o). (3) 

The overlap between the wave function up to first order and the exact wave function, 
considered as a function of  u, has two extrema, one of  which, i.e., 

Ps = E - e  i -  l / o i ' ~ ,  ( E - % )  (4) 
IVi /J( ' Is  

corresponds to a maximum, whereas the second to a minimum. For this case the maxi- 
mum overlap turns out  to be equal to the best value achievable with the basis set 
employed,  consisting of r  and ffi, according to Parseval's criterion. The minimum 
turns out to be zero. 
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Fig. 3. Overlap in the various perturbation schemes 
for the harmonic oscillator with a quadratic 
perturbation 

2 .1 .  E x a m p l e s  

2.1.1. Ground  State o f  the  Harmonic  Oscillator wi th  a Linear Per turbat ion  

Here 

1 d 2 co 2 
+ and V = ),x, 

H o  - -  2 d x 2  - ~ - - x  2 

fur thermore ,  

co X 2 <q" t ~o> 
V o i  = 6],  i �9 X 2~'2-w, E = - -  - and  

2 2w z (if" [ ~ 1_) 

where g = X/w 2 . Hence, vE = Us = l ,  i.e., RS is the best scheme. 

2.1.2. Ground  and First Exc i ted  State of  the Harmonic  Oscillator wi th  a Quadrat ic  

Per turbat ion  

The unper turbed  Hamil tonian is as above but  V = (X/2)x 2 . For  the ground state one has 

( ' I ' l ~ 0 ?  
i2 X . (~io + X / ~ '  ~i,2) and - -  = (!2 + o ) ) x / ~ / ( w  - I2) 

where ~2  = w2 + X, i.e., ~ is the f requency of  the per turbed oscillator. 

Hence, v E = v s = 5 + ( ~  - co) /~ .  In this case v turns ou t  to be far away f rom the (0, 1) 

range corresponding to the two  classical schemes. 
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The dependence of  the energy up to second order, and of  the overlap of  the exact wave 
function with that up to first order, on v, is shown in Figs. 1 and 2, respectively, for a 
perturbation of  a fixed strength. The dependence of  the best overlap on the strength 
of  the perturbation is shown in Fig. 3. 

Figs. 2 and 3 indicate that the wave function generated with VE (= Us) has a fairly high 
overlap with the exact wave function even for large perturbations, for which RS and 
BW perform quite poorly. A variational computation was carried out using the 
unperturbed wave fimctions $o and $2 as a basis. For the case presently discussed 
this kind of  variational computation coincides with the method of  Cederbaum el al. 

[4-6].  The variational energy and the overlap of  the corresponding wave function with the 
exact one are indicated in Figs. 1 and 3. The variational wave function has a (slightly), 
smaller overlap than $(vE). 

For the first excited state one similarly obtains 

Q - - c d  
VE = Fs = 7  + 30,) 

The equality of  v E and v s in all the three examples discussed is of  no general validity, 
as further examples will indicate. 

3. Two Perturbing States 

The explicit expressions for VE and v s are already too cumbersome in this case to be 
worth presenting in their general forms. The main new aspect of  the situation presently 
discussed is the fact that there are two solutions to the equation for r E ,  for any value of  
k. It is very plausible that one of  these solutions is superior from the point of  view of  
criteria such as the overlap with the exact wave function, the corresponding variational 
energy or the width o f  the Hamiltonian. It will be very important from a practical point 
of  view to have an a p r i o r i  clue to the identification of  this solution. 
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Fig. 5. Overlap vs. v for the  second 
excited state of  the  harmonic  oscil- 
latoi with  a quadratic per turbat ion 

The matrix elements of the perturbation are given by Biswas etal. [8]. As in the previous 
case, the value of  u~ belonging to the canonical branch corresponds to a higher over- 
lap wave function than the other solution. The overlap of  ~(v~) with the exact wave 
function is almost as good as the best overlap and much closer to unity than that of  RS 
and BW (Fig. 6). The energy error in the various perturbation schemes (2~E = E(u) - 
Eexact) is shown in Fig. 7. 

3.1. Examples 

3.1.1. Excited States of  the Harmonic Oscillator with a Quadratic perturbation 

The Hamiltonian is the same as that in Sect. 2.1.2 but now we are interested in the 
excited states with at least two quanta. The nth state (n > 2) is connected in first 
order with the states n + 2 and n - 2 as follows: 

Vn,n+2 =X "x/(n + 1)(n + 2)/(4co); Vn,n-2=X " v ~  - 1)n/(4co). 

The dependence of  the energy and of  the overlap on ~ is shown in Figs. 4 and 5, 
respectively. Out of  the two values of  ~,E shown in Fig. 4 the one on the "canonical 
branch" (containing RS on it) is closer to the value u s corresponding to the maximum 
overlap. 

3.1.2. Ground State of  the Harmonic Oscillator with a Quartic Perturbation 

The unperturbed Hamiltonian is as in the previous section, but the perturbation is 
V = Xx 4. This is our first non-trivial example, at least in the sense that the exact solu- 
tion is not analytically available. 

In order to compute the exact energy and the overlap between the first order and the 
exact wave function, we solve the problem variationally, using the set of  eigenstates of  
the unperturbed harmonic oscillator. Increasing the size of  the basis set we reach con- 
vergence to at least 7 decimal places in the energy and 4 decimal places in the normalized 
coefficients of  ~o, ~2 and ~4, which are the only coefficients needed to compute the 
overlap with the first-order wave function. These accuracies are obtained with basis 
sizes of about 10 harmonic functions. 
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4. More  Gene ra l  S y s t e m s :  T h e  T w o - C e n t r e  & F u n c t i o n  H a m i l t o n i a n  

The  o n e - d i m e n s i o n a l  & f u n c t i o n  H a m i l t o n i a n  [9] 

d 2 

H o -  dx 2 2 " 6 ( x - a )  

has a s p e c t r u m  cons is t ing  o f  one  b o u n d  s ta te  

4o = e x p ( -  I x -  a [ ) ;  e o = - 1  

and a c o n t i n u u m  w h o s e  Green ' s  f u n c t i o n  is 

P ( x , y )  = zTn 2_-~g _ e---n - exp  [ -  ( i x  - a i + l y  - a ])l /( /32 _ 1) 

- exp  [ - / 3 ( I x  - a I + [Y - a [)1 / [2/3(/3 - 1)1 - exp  (-/31 x - y 1)/(2/3). 
(s) 

I n t r o d u c i n g  V = - 2 X  �9 8 (x  + a)  as the  p e r t u r b a t i o n ,  we  get  t h e  t w o - c e n t r e  8 - f u n c t i o n  

H a m i l t o n i a n  w h o s e  g r o u n d  s ta te  ene rgy  and  e i g e n f u n c t i o n  are g iven by  E = - 7 2  

whe re  (3' - 1 ) -  (3' - X) = X exp  ( -  43`a) and ~ = A �9 exp  ( -  3' I x - a [ ) + exp  ( -  3'] x + a j) 
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where A = exp ( -27a ) / (7  - 1). The perturbation theory corrections are 

and 
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e O) = - 2 X  �9 e x p ( - 4 a )  

e(2)(u) = - 4 X 2 .  exp ( - 4 a )  " (1/(2/3) + [exp (-413a)(2/3) - exp (-4a)/(/3 + 1)]/(/3 - 1)} 

~(0) + t~(1) =Ap" e x p ( - I x  - a l )  +Bp �9 exp (-/3 jx - a[ ) + Cp �9 exp ( - /3Ix +al  ) 

where 

Ap = ( t3-  1 ) -  2X" exp (-4a)/(/3 + 1) 

Bp = X '  exp [--2a" (1 +fi)]//3 

Cp = X(/3 - 1) ' exp ( 2a)//3 

_ / 3 2  = E + V(eo - E ) .  

Using these results and overlap integrals of  the form 

2 [o~" exp ( - 2 ~ )  -/3" exp (-2ua)]/(c~ 2 -/32) 

exp [ - a i x - a i - / 3 i x  + a l ]  dx= for ~ =#/3 

[.(1 + 2o~t) exp (-2o~a)/a for o~ =/3 

the results presented in Fig. 8 were evaluated, for a = 1. The main result to be 
pointed out is that for a sufficiently large perturbation ~(VE) ceases to be a better 
approximation to the exact wave function than RS and BW. 

5. Asymptotic Values of  VE and v s for Small Pertllrbations 

As a first attempt to formulate a starting point for the generalized perturbation theory, 
which does not depend on complete knowledge of  the perturbed energy, we shall now 
study the behaviour of  v E and v s for small perturbations. This will enable us to derive 
some approximate but simple expressions for them. Let v ~ = lira v E and v ~ = lira Vs. 

~.-+o ~ 0  

It is shown in the Appendix that 

~o z._, ( %  _ e i ) (  % _ ~k) Voo -- - ( 6 )  

j , ~  �9 i ( % - )  ~ 

and 

�9 - e / ) S ( e o  ek)/[" oo ~ .  ieo---ei)4] " (7) 

Introducing the modified Green's function 

~ , [ i ) ( i t  

l 



210 N. Moiseyev and J. Katriel 

we get 

p(n)~_0nF2 = ( _ l ) n . n ! .  ~ ,  [ i ) ( i )  
0~tn % i (CO -- c i )n+l  

with these derivatives of the Green's function we can write 

v ~ = - (01VI'(~176 O)/(Voo" (OI VF(~)V[O) 

and 

V~ = - 3  (OIP(2) VP(~ �9 (Oh VF(3) VIO)) �9 

(8) 

(9) 

5.1. Approximations to the Asymptot ic  Expressions 

The approximations introduced in the present section are hoped to provide some start- 
ing point for the application of the generalized perturbation theory to realistic systems. 

5.1.1. Uns61d Type Approximation 

The expressions for v~ and Vs ~ contain energy denominators in a manner which makes 
an Uns61d type approximation particularly attractive. This is so because the constant 
energy difference taken outside of the summations prior to application of the closure 
relations appears, raised to the same power, in both the numerator and the denominator. 

The result for both the energy and the overlap is 

1 (V3)~176 - 2V~176 (V2)~176 + (V~176 (10) 

v~  = V o o -  (V )oo - (Voo): 

In this approximation the reduced weights of the higher energy terms are neglected as 
a consequence of replacing all energy differences by a constant. This is probably more 
severe for the overlap than for the energy, the energy denominators being of forth power 
in the former compared to second power in the latter. It therefore seems likely that v ~ 
is better approximated by v~ than Vs ~ 

5.1.2. Single Term Approximation 

As Uns61d's approximation neglects the differences in weights of the different terms, 
due to the energy denominators, it may be instructive to compare it with the other ex- 
treme approximation, in which we assume that only one state, most likely the one 
nearest the state we are interested in, contributes to the sums over states in v } and vs ~ 
In this approximation v~ = Vii/Voo, where i is the only contributing state. In view 
of the discussion following the introduction of the Uns61d approximation it seems 
likely to expect the present approximation to be closer to Vs ~ than to v ~ This con- 
jecture and the corresponding one for the Uns61d approximation are studied through 
the following examples. 
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5.2. Examples o f  the Asymptot ic  Expressions and Their Approximations 

5.2.1. One Perturbing State 

Denoting the state of interest by ~o and the perturbing state by ~ 1 one obtains from 
the general expression 

pO =vO=pO =pO =vO_ Vll 
Voo" 

For the ground state of  the harmonic oscillator with a harmonic perturbation v ~ = 5 
and for the first excited state v ~ = 7/3, in agreement with the results in Sect. 2.1.2. 
The upper part of  Fig. 3 indicates that for the ground state of  the harmonic oscillator 
with a quadratic perturbation the overlap of  ~(v ~ with the exact wave function is 
better than that of  the variational wave function, and practically identical with the 
best overlap as far as the comparison with RS and BW is concerned. 

5.2.2. Two Perturbing States 

If  the two perturbing states ~b i and ~bj are situated with respect to the state of interest, 
~0, so that e0 - ei = el - eo then 

vo =_ : vg i"  v i i  + v 2 : o1  v i i -  2 V o i ' V q ' V j o  

Voo " (vgi  + vgj) 

For the excited states of  the harmonic oscillator with a harmonic perturbation one 
obtains v ~ = 1 + 4/(n 2 + n + 1), which for n > 2 is already close enough to v = 1 to 
indicate that the improvement over the RS scheme cannot be expected to be sub- 
stantial. 

For the ground state of  the harmonic oscillator with a quartic perturbation one 
obtains v ~ = 23~,  v ~ = 197,Z vi~ = 13 and v ~ = 34. The ordering v~ < v ~ < v ~ < v~ is 
in rough agreement with the comments made in the general discussion following the 
introduction of the Uns61d and single term approximations. Figs. 6 and 7 show that 
using v~, v ~ or even the approximations to them (v~ and v ~  one obtains considerably 
improved results, in comparison with the conventional RS and BW schemes. 

5.2.3. The Two-Centre 8-Function Hamiltonian 

Using the modified Green's function, Eq. (5), and the expressions for v ~ and v ~ Eqs. 
(8)-(9), one gets v ~ = 60.0 and Us ~ -- 37.6, in agreement with the extrapolation to 
X = 0 of  the values evaluated numerically. Overlaps are presented in Fig. 8. 

6. Discussion 

The main conclusion emerging out of  the results presented is that using rE, and even 
v ~ or one of  the approximations to it (v ~ or v~ in order to modify the first-order 
wave function is a useful procedure generating an improved wave function without 
really investing a significant amount of  extra effort in comparison with the standard 
formulations of  perturbation theory. 
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Appendix: Derivation of the Asymptotic  Expressions v ~ and v ~ 

We shall write the second-order energy in the form 

E ( Z ) = _  ~ , , iVoi[  2 1 
z- F e i - E  1 - v ' ~ i  

where ~i = (eo - E)/(ei - E). Clearly, as 3,-+ O, ~i -+ O, so that provided that v ~ is finite 
one can write 

, Igoil 2 
E(2) ~lZBW,-(2) + v o " Vo ~ . 

(ei e0) 2 '  
i 

Equating the second term to the third-order BW term one obtains Eq. (6). Denoting by 
S the overlap between the exact and the normalized first-order wave function we get 

~ " E -~-6 i I - p~i 
]Sj2 iS~ 2 i = �9 , where S O = ( ,I, I Co ) 

: , ( V o l t  2 " 1 
1+ i \ e i - E ]  ( 1 - v ~ i )  2 

and o i = ( q~l ~ i ) / S o  �9 

For small perturbations one can approximate this through the following steps 

ISI2 [Sot2 [ 1 + 2  ~ . ,  Voi 1 ] .  
" ~ ~  i 1 - v ~  

[, _Z,{ 1 1] 
(1 - ;~ i )2  

E -~6i 1 - P~i E -  e i (1 --P~i)2 

ISo [ 2 " (1 +A +B "v + C" 112) 

where 

V ~  " 2 ~  - E -  el] 
i 

B = ~ '  V~ 
i (Co - e l )  2 

= w / '  
C ~ @ _ ffi)3 

2(~ E -  ei] V~176 

3 - B - e ~ ]  V g o .  
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The maximum overlap is obtained for v s = - B / 2 C .  In order to obtain oi we write the 

exact wave function in terms of  its RS expansion up to second order, i.e., 

eo - ei (% - 0 ( %  - ek) ~k 
I Z' 

- V o o "  ( % _ O 2  - ( % _ O 2 .  
J J 

Using this representation of  the exact wave function we get 

, (1 
e o - - e i /  " e o - - e i ]  o i ~ Go - c i 

r t _ � 8 9  1~. Ig~ 
(e - ej): 

/ (Go ei). Go - ~i/ ~ Go - ~j] / 

We also need 

Voi ~ Voi_ ( 1 _  V o ~  
E - e l  G o - e l  eO -- ei] 

to obtain Eq. (7). 
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